Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy

In this study, we integrate a single-photon detector array into a confocal laser scanning microscope, enabling the combination of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. This unique combination delivers a twofold improvement in lateral localization accuracy for single-molecule localization microscopy (SMLM) and maintains its simplicity. Moreover, the addition of lifetime information from our confocal laser scanning microscope eliminates chromatic aberration, particularly crucial for achieving few-nanometre resolution in SMLM. Our approach, named fluorescence-lifetime image scanning microscopy SMLM, is demonstrated through direct stochastic optical reconstruction microscopy and DNA point accumulation for imaging in nanoscale topography experiments on fluorescently labelled cells, showcasing both resolution enhancement and fluorescence-lifetime multiplexing capabilities.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules

Article Open access 22 January 2021

Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields

Article Open access 24 May 2021

Optimizing imaging speed and excitation intensity for single-molecule localization microscopy

Article 17 August 2020

Data availability

Code availability

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ArticleADSGoogle Scholar
  2. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science319, 810–813 (2008). ArticleADSGoogle Scholar
  3. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed.47, 6172–6176 (2008). ArticleGoogle Scholar
  4. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA103, 18911–18916 (2006). ArticleADSGoogle Scholar
  5. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc.12, 1198–1228 (2017). ArticleGoogle Scholar
  6. Reinhardt, S. C. et al. Ångström-resolution fluorescence microscopy. Nature617, 711–716 (2023). ArticleADSGoogle Scholar
  7. Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano14, 14190–14200 (2020). ArticleGoogle Scholar
  8. Oleksiievets, N. et al. Single-molecule fluorescence lifetime imaging using wide-field and confocal-laser scanning microscopy: a comparative analysis. Nano Lett.22, 6454–6461 (2022). ArticleADSGoogle Scholar
  9. Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A. & Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat. Photon.8, 124–127 (2014). ArticleADSGoogle Scholar
  10. Isbaner, S. et al. Axial colocalization of single molecules with nanometer accuracy using metal-induced energy transfer. Nano Lett.18, 2616–2622 (2018). ArticleADSGoogle Scholar
  11. Thiele, J. C. et al. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Sci. Adv.8, 2506 (2022). ArticleGoogle Scholar
  12. Sheppard, C. R. Super-resolution in confocal imaging. Optik80, 53–54 (1988). Google Scholar
  13. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett.104, 198101 (2010). ArticleADSGoogle Scholar
  14. Sheppard, C. J., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett.38, 2889–2892 (2013). ArticleADSGoogle Scholar
  15. Sheppard, C. J., Castello, M., Tortarolo, G., Vicidomini, G. & Diaspro, A. Image formation in image scanning microscopy, including the case of two-photon excitation. J. Opt. Soc. Am. A34, 1339–1350 (2017). ArticleADSGoogle Scholar
  16. Sheppard, C. J. et al. Pixel reassignment in image scanning microscopy: a re-evaluation. J. Opt. Soc. Am. A37, 154–162 (2020). ArticleADSGoogle Scholar
  17. Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods6, 339–342 (2009). ArticleGoogle Scholar
  18. Reymond, L. et al. SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt. Express27, 24578–24590 (2019). ArticleADSGoogle Scholar
  19. Reymond, L., Huser, T., Ruprecht, V. & Wieser, S. Modulation-enhanced localization microscopy. J. Phys.: Photonics2, 041001 (2020). ADSGoogle Scholar
  20. Cnossen, J. et al. Localization microscopy at doubled precision with patterned illumination. Nat. Methods17, 59–63 (2020). ArticleGoogle Scholar
  21. Sun, Y. et al. Modulated illumination localization microscopy-enabled sub-10 nm resolution. J. Innov. Opt. Health Sci.15, 2230004 (2022). ArticleGoogle Scholar
  22. Kalisvaart, D. et al. Precision in iterative modulation enhanced single-molecule localization microscopy. Biophys. J.121, 2279–2289 (2022). ArticleADSGoogle Scholar
  23. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods10, 1122–1126 (2013). ArticleGoogle Scholar
  24. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl Acad. Sci. USA110, 21000–21005 (2013). ArticleADSGoogle Scholar
  25. Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon.13, 116–122 (2019). ArticleADSGoogle Scholar
  26. Rossman, U. et al. Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica6, 1290–1296 (2019). ArticleADSGoogle Scholar
  27. Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution flim. Nat. Methods16, 175–178 (2019). ArticleGoogle Scholar
  28. Buttafava, M. et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica7, 755–765 (2020). ArticleADSGoogle Scholar
  29. Koho, S. V. et al. Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. Biomed. Opt. Express11, 2905–2924 (2020). ArticleGoogle Scholar
  30. Slenders, E. et al. Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy. Biophys. Rep.1, 100025 (2021). Google Scholar
  31. Roth, S., Sheppard, C. J., Wicker, K. & Heintzmann, R. Optical photon reassignment microscopy (OPRA). Opt. Nano.2, 5 (2013). ArticleGoogle Scholar
  32. Roth, S., Sheppard, C. J. & Heintzmann, R. Superconcentration of light: circumventing the classical limit to achievable irradiance. Opt. Lett.41, 2109–2112 (2016). ArticleADSGoogle Scholar
  33. Fazel, M. et al. Fluorescence microscopy: a statistics-optics perspective. Rev. Mod. Phys.96, 025003 (2024). ArticleADSGoogle Scholar
  34. Stallinga, S., Radmacher, N., Delon, A. & Enderlein, J. Optimal transfer functions for bandwidth-limited imaging. Phys. Rev. Research4, 023003 (2022). ArticleADSGoogle Scholar
  35. Smith, C. S. et al. Structured illumination microscopy with noise-controlled image reconstructions. Nat. Methods18, 821–828 (2021). ArticleGoogle Scholar
  36. Holden, S. J., Uphoff, S. & Kapanidis, A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods8, 279–280 (2011). ArticleGoogle Scholar
  37. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics30, 2389–2390 (2014). ArticleGoogle Scholar
  38. Stein, S. C. & Thiart, J. TrackNTrace: a simple and extendable open-source framework for developing single-molecule localization and tracking algorithms. Sci. Rep.6, 37947 (2016). ArticleADSGoogle Scholar
  39. Linde, S. Single-molecule localization microscopy analysis with ImageJ. J. Phys. D: Appl. Phys.52, 203002 (2019). ArticleADSGoogle Scholar
  40. Stein, S., Thiart, J., Thiele, J. C. & Radmacher, N. Single-molecule localization microscopy with image scanning microscopy. GitLabhttps://gitlab.gwdg.de/igregor/single-molecule-localization-microscopy-with-image-scanning-microscopy (2023).
  41. Rieger, B. & Stallinga, S. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem15, 664–670 (2014). ArticleGoogle Scholar
  42. Zwettler, F. et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (ex-SMLM). Nat. Commun.11, 3388 (2020). ArticleADSGoogle Scholar
  43. Thiele, J. C., Nevskyi, O., Helmerich, D. A., Sauer, M. & Enderlein, J. Advanced data analysis for fluorescence-lifetime single-molecule localization microscopy. Front. Bioinform.1, 740281 (2021). ArticleGoogle Scholar
  44. Wegel, E. et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: a practical comparison. Sci. Rep.6, 27290 (2016). ArticleADSGoogle Scholar
  45. Oleksiievets, N. et al. Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Commun. Biol.5, 38 (2022). ArticleGoogle Scholar
  46. Kalisvaart, D., Hung, S.-T. & Smith, C. S. Quantifying the minimum localization uncertainty of image scanning localization microscopy. Biophys. Rep.4, 100143 (2024).
  47. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron68, 843–856 (2010). ArticleGoogle Scholar
  48. Truckenbrodt, S. et al. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep.19, 45836 (2018). ArticleGoogle Scholar
  49. Tortarolo, G. et al. Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat. Commun.13, 7723 (2022). ArticleADSGoogle Scholar
  50. Slenders, E. & Vicidomini, G. ISM-FLUX: MINFLUX with an array detector. Phys. Rev. Research5, 023033 (2023). ArticleADSGoogle Scholar

Acknowledgements

N.R., J.E. and S.O.R. acknowledge financial support from the Bundesministerium für Bildung und Forschung (BMBF), Germany, via project NG-FLIM (project nos. 13N15327 and 13N15328). J.I.G. acknowledges financial support from the European Union’s Horizon 2021 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101062508 (project name: SOADOPP). J.E. and J.I.G. acknowledge financial support from the DFG through Germany’s Excellence Strategy EXC 2067/1-390729940. J.E. and O.N. thank the European Research Council (ERC) for financial support via project ‘smMIET’ (grant agreement no. 884488) under the European Union’s Horizon 2020 research and innovation programme. We thank A. Chizhik for providing us with the illustration of our ISM microscope setup, as well as for carefully reading the manuscript.

Author information

  1. These authors contributed equally: Niels Radmacher, Oleksii Nevskyi, José Ignacio Gallea.

Authors and Affiliations

  1. Third Institute of Physics—Biophysics, Georg August University, Göttingen, Germany Niels Radmacher, Oleksii Nevskyi, José Ignacio Gallea, Ingo Gregor & Jörg Enderlein
  2. Department of Chemistry, University of Oxford, Oxford, UK Jan Christoph Thiele
  3. Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany Silvio O. Rizzoli
  4. Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany Silvio O. Rizzoli & Jörg Enderlein
  1. Niels Radmacher